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Abstract. A method assigned to solve exactly the Schrodinger equation with non-muffin- 
tin crystal potential is numerically tested. The approach is based on the Green function 
technique. It differs from the conventional multiple-scattering methods in that the wave field 
qk is sought at some points within a cell rather than at the boundaries. The empty lattice 
and three-dimensional Mathieu problems are studied with the emphasis on convergence 
properties. Generally, the convergence is governed by three independent parameters, 
resulting as a consequence of the truncation of some infinite series, namely, the expansions 
of the Green function, potential and wavefunction qk sought. It is numerically shown that, 
by increasing the three parameters mentioned, the calculated energy eigenvalues approach 
the exact ones. 

1. Introduction 

The eigenstates qk of a one-electron crystal Hamiltonian are determined as finite 
solutions of the following boundary-value problem 

[ -V’  + V(r)  - E ] q k ( r )  = 0 

V(r  + R,) = V(r)  q k ( r  + R,) = exp(ik.R,)v,(r) 

or of the equivalent integral equation 

q k ( r )  = IQ Gk(r ,  r‘; E)V(r’ )qk(r ’ )  d3r’.  

Here S2 is the unit-cell volume, {R,} are the lattice translation vectors and the wavevector 
k lies within the first Brillouin zone. The Green function (GF), which meets the periodic 
boundary conditions, may be written as a series in the reciprocal lattice vectors K,: 

1 
S2 fi Ik+K,I2  - E 

exp[i(k + K , )  * ( r  - r’)]  
Gk(r ,  r ’ ;  E )  = - -E (3) 

A number of band-structure methods, such as Korringa-Kohn-Rostoker (KKR), 
augmented plane-wave (APW), linear muffin-tin orbitals (LMTO), and so on, are based 
on the well known ‘muffin-tin’ (MT) model for a crystal potential. Much effort has been 
made over the years to go beyond the MT model. The purpose is to develop a formalism, 
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delivering an exact solution to the problem (1) for a local crystal potential, which is a 
continuous function of point r except the nuclear positions. The principal difficulties are 
connected with the transformation from equation (2) to a set of algebraic equations in 
the angular momentum 1 L )  = IZm) representation. The choice of this particular rep- 
resentation is caused by the essential feature of any crystal potential, which is close to a 
spherically symmetric function in local coordinates within a large enough portion of the 
unit cell. 

The studies by Ziesche [l] ,  Williams [ 2 ] ,  Williams and van Morgan [3], Faulkner [4] 
and Brown and Ciftan [5] have outlined the ways in which the problem in question could 
be resolved. The aspiration to elaborate the theory as a straightforward extension of the 
multiple-scattering (MS) approach is revealed as a common feature of these works as 
well as many others [6-161. Such an extension is based on the following interpretation 
of integral equation (2): an electron is scattered successively from one cell to another, 
and between the scattering events it is propagated as a free particle. This picture 
requires any crystal potential V be represented as a superposition of some individual cell 
potentials v = U,,, each of which vanishes beyond its 'own' cell a,,. Strictly speaking, a 
thin skin of thickness 6, adjoining the inner side of the cell surface, should be introduced. 
Because of the singular nature of the GF, each potential U ,  must vanish within this skin 
too [ 171, and the final expressions should be obtained in the limit 6 + 0. 

In accordance with the essence of MS concept, one looks for the resulting wave field 
amplitude ?pk (2) in the vicinity of cell surfaces. This approach is equivalent to matching 
both the fields ?pk and vqk across the cell boundaries. The corresponding techniques are 
based on two decisive assertions. First, the wavefunction q k  has to be expanded in a set 
of some basis functions, satisfying the Schrodinger equation with the individual cell 
potential v at an arbitrary energy E.  Secondly, the GF should be expressed in the angular 
momentum representation [18] as 

Gk(r, r'; E )  = K C ~ L ( K ,  r ) n ~ ( K ,  r')  
L 

+ E C B L L , ( ~ ,  E ) ~ L ( K ,  r)jL' ( K ,  r'> r < r' .  (4) 
L L' 

Here K = V E ,  and the abbreviated notations for some functions of ?D variable r 

j L  ( K ,  r)  = il ( K Y )  y ,  ( f )  nL(K, r) = nl(Kr)YL(f)  f =  r/r ( 5 )  

are introduced. These functions are defined as products of real spherical harmonics Y L  
and spherical Bessel j l  or Neumann nl functions, respectively. For the sake of simplicity, 
we consider a crystal with only one atom per unit cell. 

As a consequence of these assumptions, a set of homogeneous algebraic equations 
is obtained. The corresponding secular equation takes the form of generalised KKR one: 

The generalisedphase shifts ~ L L , ( K )  describe the scattering of an electron with an energy 
E = K* from the non-spherically symmetric potential v of the individual cell. 

Ziesche was the first to recognise that equation (6) breaks down [l]. He was able to 
prove that, along the lines of the MS concept, a secular equation of factorised type (6), 
in which the quantities qLLr and B L L ,  would enter in a separate fashion, cannot be 
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derived. The simple expression (6) appears to be incorrect, because the GF expansion 
(4) is valid only if either 

lr’ +R” I (7a) 

(7b)  

or 

r‘ < lr + RmnI 

where Rmin is the shortest among all the non-zero translations R,. It appears that 
the double sum in expression (4) is only conditionally convergent, and the order of 
summations over L and L’ depends upon specific positions of points r and r ’ ,  by which 
either (7a) or (7b)  are satisfied [ 5 ,  lo].  According to the MS concept, the point r in 
equation ( 2 )  should run over the surface of the unit cell, and the point r’ must run 
independently throughout the cell volume. Thus a uniformly and absolutely convergent 
GF expansion does not exist for such positions of points r and r’. Hence, when using this 
expansion (4) in equation ( 2 ) ,  one cannot interchange the order of integration and 
summation, which is necessary to proceed to a set of algebraic equations. 

A simple way to circumvent this obstacle is offered in our previous publication [19]. 
To achieve the above formulated goals, it is necessary to move away from treating the 
wave fields in the vicinity of cell boundaries. Instead, the amplitudes qkshould be sought 
at some points r belonging to spherical domain 9, centred at the cell origin. The radius 
of this domain 9 should be chosen in such a way that for each r E 9 and each r’ E Q the 
inequality r + r’ < Rmin be true. In such a case both the conditions (7) are satisfied 
simultaneously, and therefore the GF expansion (4) converges uniformly and absolutely. 
It is interesting to note that the possibility to handle the integral equation ( 2 )  at some 
arbitrary points r within a cell was already pointed out by Ziman [20]. Recently, the 
general formalism resulting from this ansatz has been presented [19]. Evidence has also 
been given [19] that in the specific case of a MT potential the general equations reduce 
to the well known KKR ones [17,18].  

The purpose of the present paper consists of the examination of this method by 
means of numerical treatment of the 3D Mathieu problem as well as of empty lattice 
tests. The main attention will be paid to studying the accuracy and the convergence 
properties. 

In section 2 the method offered is outlined, and some parameters that govern the 
convergence are introduced explicitly. Section 3 contains the analytic solution of the 
3D Mathieu problem. In section 4 the numerical aspects of practical calculations are 
considered. The computed results for empty lattice eigenvalues are discussed in section 
5 ,  and the ones for the 3D Mathieu problem are discussed in section 6 .  The paper is 
completed by the conclusions (section 7 ) .  

2. Outline of the method and convergence problem 

Utilising both Green’s theorem and the hermiticity of the Hamiltonian, one may trans- 
form equation (2) to a surface one: 

da’[Gk(r,  r ’ ;  E )  V ’ q k ( r ’ )  - qk(r ’ )V’Gk(r ,  r ’ ;  E ) ]  = 0 r E Q ,  (8) i, 
Here d a  is the differential area element, directed along the outward normal to the 
surface 0 of the cell 52. To proceed from this integral equation (8) to a set of algebraic 
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equations, both the GF and wavefunction should be expanded in some infinite series, 
which by apractical implementation are approximated by some finite sums. Thus a study 
of the convergence implies the determination of such numbers of terms in these sums, 
which provide a given accuracy. To make the convergence description easier, it is appro- 
priate to turn to asymmetrised basis, by meansof which some integer indices are naturally 
introduced. Thereby it is advisable to point out the numbers of terms in these sums 
explicitly. 

Let the potential V of a one-atom crystal be invariant under the transformations of 
a point group 9, and let a vector k be invariant under the transformations of a group 9&. 
Define a complete orthonormalised set of functions YC‘Cfk”, which are transformed accord- 
ing to the vth row of an irreducible representation zk of group $&, as some linear 
combinations of real spherical harmonics YL:  

The number i determines uniquely the value li of the corresponding angular momentum. 
(The indices zkv will be omitted everywhere except in statements allowing ambiguities.) 

Consider the way in which the function qk may be expanded. Let a cell 0 be 
circumscribed by a sphere 6. Define a set of some regular functions x, which satisfy the 
Schrodinger equation at a given energy E and at all points r E 6:  

[ - V2 + V(r) - E]x,T;”(r) = 0 r E 6 .  (10) 

The regular solutions x are set by the boundary conditions at r = 0 only, and their 
asymptotic behaviour at r+ cc is not subjected to any requirements. Their classification 
by numbers jzkv is governed by the transformation properties at r + 0. These functions 
x ,  defined within the circumscribed sphere 6, form a basis set, whose completeness and 
independence were proven by Brown and Ciftan ([5], equations (2.27) to (2.30)). 

Each function qk, satisfying equation (l), may be expanded in these basis functions 
xjE throughout the cell 

Within the circumscribed sphere both the potential V and the basis functions xjE may be 
expanded in symmetrised harmonics (9) 

Here z1 is the identity representation of group 9. Define also a matrix with the elements 

Then the regular partial waves qtj satisfy the following set of Volterra integral equations 
[31: 
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r<  = min(r, r ’ )  

JIW = X i / ( X )  

r >  = max(r, r ’ )  

f i I (x )  = xnl(x).  

Apparently the set ( 1 5 )  of size pq decomposes into q sets, each of which contains p 
bound equations. Namely, all the partial waves yti ( t  = 1 , 2 ,  . . . , p )  belong to one and 
the same set of a fixed number j .  When solving this set, it is convenient to introduce so- 
called phase functions C and S [3,5]: 

q t j ( r )  = Ctj(r) j /r(Kr)  + Stj(r)fi/l(Kr). (16) 

These phase functions satisfy in turn the following set of bound differential equations of 
first kind: 

with the boundary conditions 

Crj(0) = 6tj Sfj(0) = 0. 

Also the GF expansion (4) must be rewritten as 
4 

G k ( T ,  r ’ ;  E )  = K 2 $ f k ” ( K ,  r ) N f k ” ( K ,  r’)  
T k Y  

4 s  

f 2 B 5 k Y ( k ,  E ) $ f k ” ( K ,  r ) $ : k Y ( K ,  r’)  
T k Y  f= l  

r < r ’  r + r‘ < Rmin S+m q + m .  

The symmetrised functions of 3~ argument r (see ( 5 ) )  

and also the symmetrised structure constants 

are introduced here. 
Now place a point r within such a spherical domain 9, providing that for all r E 9 

and for allr’ E 52 the condition r + r’ < Rmin holds true. Then substituting the expansions 
(11)  and (18)  into the integral equation (8), one may proceed to the desired set of 
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homogeneous algebraic equations with respect to some unknown coefficients A, [ 191. 
The compatibility condition results in the following secular equation: 

5 

det!lKgi,(K) + r = l  2 Btr(k, ~ ) f t , ( K ) l I  = 0 i =  1 , 2 , .  . . , q ; j =  1 , 2 , .  . . , q .  (19) 

Its zeros determine the eigenvalues sought. The quantities 

are defined as some integrals over the surface CJ. 
Some peculiarities of secular equation (19) are worth noting. It resembles the 

expression (6), obtained as a straightforward generalisation of the KKR MT equation 
[5,9, 131. However, the expressions, (6) and (19), are not identical. The distinction is 
caused by the various means in which the basis functionsX,E are defined. In our case they 
are chosen as some solutions of equation (10) with the total potential V at each point 
r E 6. On the contrary, when obtaining the secular equation of type (6), some other 
functions are used. The latter satisfy equation (10) with the modified potential, which 
matches the original one at each point r E Q and vanishes at r S2 [5] .  So, the quantities 
f, and g, (20) are not proportional to sin qfl and cos qf,, respectively. Incidentally, this 
abrupt truncation of the potential U at the surface of the cell, forced by MS requirements, 
results in a worse convergence of multipole decomposition (12). 

By a practical realisation the secular equation (19) determines an approximate 
energy eigenvalue, numbered by three independent parametersp, q and s, arising as a 
consequence of truncating the infinite series (13), (11) and (18), respectively. The 
number of basis functions x included in the expansion (11) determines the size q of 
secular matrix (19). The number of componentsretainedin GFexpansion (18) determines 
the number s of terms that contribute to each matrix element (19). And finally, the 
number p of partial waves qr, ( t  = 1 , 2 , .  . . , p )  included in expansion (13) of basis 
function x , ~  affects the value of each integral f or g (20). Hence, before studying the 
convergence of eigenvalues against the size q of secular matrix, the convergence of each 
matrix element (19) against s should be ensured, and the same holds for the convergence 
of each integral f, or g, (20) against the number p .  In such a general treatment, the 
description of convergence properties will be very involved. To simplify the investigation 
we have arbitrarily set p = s (except for MT and empty lattice cases; see below). The 
corresponding estimate for an energy eigenvalue we shall denote as E,,s. 

This manner of convergence differs substantially from the one in MT approximation. 
It is easy to show that p = 1 in the MT case, and additionally the off-diagonal integrals 
ff;" and gf;" ( i  # j )  do vanish [19]. From equation (19) it follows that in the MT model 
the convergence depends upon a single parameter q (the size of the secular matrix), 
which is conventionally described by avalue I,,,,, = I, of the principal angular momentum. 

3. Three-dimensional Mathieu potential: analytical solution 

It is pertinent to perform numerical studies of the method considered by means of a 
model, the exact solutions of which are known. Such a possibility is afforded by the 
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Figurel.The radialdependenceof the3~Mathieu 
potential (21) with U ,  = 0 and U2 = -1 along the 
three directions in a simple cubic cell: - [ l l l ] ,  
__-- [OH], -.-.- [OOl]; R I  = in, R 2 =  
+R.\//2, R3 = $X.\/3. 

periodic solutions of the 3D Mathieu problem. Consider a potential 

~ ( r )  = U1 + ~ ~ [ c o s ( 2 n x / a )  + cos(2ny/a) + cos(2nz/a)]  (21)  
by means of which a simple cubic (sc) lattice is brought into consideration. U1 and U, 
are free parameters. Define a dimensionless energy E = ( ~ / ~ J G ) ~ E ,  and let U = n. The 3~ 
equation ( 1 )  with the potential (21)  may be decomposed into three ordinary differential 
equations. Hence the energy eigenvalues of the initial 3~ problem may be found, 
provided the eigenvalues d of the so-called canonical Mathieu equation [21] 

d 2y/dX2 + (d - U2 COS 2 ~ )  y = 0 (22)  
are known. In particular, the eigenvalues dof the 3D problem at the point r (k = 0) are 
expressed by means of eigenvalues a2r and bZr ( r  = 0 , 1 ,  . . .), corresponding to even and 
odd periodic solutions of equation (22) ,  respectively. In specific cases of lowest levels 
with symmetries rl, r15 and r12, in a sc lattice the following expressions result: 

(23) Elr, = t( U1 + a. + uo + a o )  

dlrlz = t ( U l  + a0 + a. + a21 

Elr15 = +(Ul + a0 + a. + b2) 

= $(Ul + a. + a2 + b2) .  

The method offered (see section 2 )  may also be applied to the 3D Mathieu problem. 
For this purpose it is necessary to find the components ui(r)  (12) of the potential (21).  
The first five symmetrised components are presented below: 

u1(r)  = 2n1’2[U1 + 3U,j,(2r)] 

u 2 ( r )  = 24.36720 x U2j4(2r )  

u 4 ( r )  = 31.48599 X U2js(2r)  

u3(r )  = -13.55665 x U2j6(2r )  

u 5 ( r )  = -19.97225 X U2jlO(2r).  

These expressions give evidence that, by increasing the number i, the components ui(r)  
approach zero sufficiently rapidly in the whole range 0 S r S l n q 3  of radial variable r .  

Note that the 3~ Mathieu potential (21)  is represented by a highly anisotropic 
function. The degree of anisotropy may be displayed by plotting the potential along the 
three directions in a cubic cell (figure 1).  The potential is close to a spherically symmetric 
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function over a small enough portion of cell volume (Y  5 0.5). The magnitude of the 
variations of the potential with the angles at the radius of the inscribed sphere (Y = in) 
reaches a value -1.5, while the total potential within the cubic cell varies from the value 
-3.0 in the centre to +3.0 at the corners. Such a strong anisotropy of 3D Mathieu 
potential permits one to consider it as a good test for methods pretending to exact 
solution. 

4. Numerical aspects of the calculations 

The rate of convergence of the expansion (13) is obviously dependent upon the degree 
of crystal potential anisotropy. If the potential could be a spherically symmetric function 
(it is clearly impossible for any crystal), that is, if vt,(r) = 0 for t # j ,  then all the off-- 
diagonal waves rpl,(r) ( t  # j )  do vanish. Therefore, the single partial wave rp,, might 
contribute to the basis function x , ~ .  The higher the degree of anisotropy, the more terms 
should be included in the expansion (13). The numberp of these terms determines the 
size 2p of the set (17) of bound differential equations of first order. To find the phase 
functions C and S ,  satisfying the set (17), we use the Runge-Kutta method. 

Once the basis functions xIE as sums (13) have been computed, one may proceed to 
the estimation of integralsf, and g,  (20). Substantial simplifications are reached if, by 
computation of gradients of 3D functions entering the integrands in expressions (20), the 
numerical methods are eliminated. Keeping this in mind, we represent these integrands 
as some sums of products of functions depending upon radial variable only and functions 
depending upon angular variables only (see (13) and (186)). The gradients of angle- 
dependent parts are computed analytically by means of symbolic programming system 
REDUCE [22], Hence numerical methods are required only for the computations of values 
of partial waves rpt, and of their radial derivatives at an arbitrary point on the cell surface. 
To this end we apply a spline interpolation routine. 

The symmetry of integrands in expressions (20) allows us to reduce the integration 
to the irreducible part of the cell surface (1/48th part in the case of cubic symmetry). 
Until the number j is not large enough, the integrands (20) exhibit a few oscillations 
within the irreducible part. Therefore, for this surface integration it is appropriate to 
use some standard methods such as the Simpson routine. The accuracy of the calculations 
may be checked by test examples-MT model and zero potential-which both allow the 
analytic computations of integrals (20). 

The structure constants B ,  (18a) have been computed by means of the Ewald 
technique [ 181. 

We do not quote here the accuracy with which these intermediate functions and 
quantities mentioned above (rp, x ,  f ,  g, 6) are computed, because that information 
requires too much space, and it may be the subject of a separate publication. Instead, we 
prefer to consider the accuracy of the resulting eigenvalues, reflecting all the individual 
accuracies in a cumulative fashion. 

5. Empty lattice test 

The dimensionless eigenvalues E of an empty sc lattice with constant potential V(r)  = 
U1 may be obtained as singularities of the GF (3): 

Consider the point r (k = 0). The lowest level lrl with the energy E = aU, is non- 
E =  a[Ul + Ik + K ,  1 2 ] .  
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Table 1. Calculated 
(a = n). 

and exact E energy eigenvalues lr, for empty simple cubic lattice 

-0.4 -0.1021 -0.0995 -0.0998 -0.1001 -0.1000 -0.1 
-0.8 -0.2085 -0.1985 -0.1994 -0.2003 -0.2000 -0.2 
-1.2 -0.3195 -0.2960 -0.2985 -0.3009 -0.3000 -0.3 
-1.6 -0.4355 -0.3925 -0.3973 -0.4016 -0.4000 -0.4 
-2.0 -0.5577 -0.4880 -0.4956 -0.5029 -0.5000 -0.5 

degenerate. The six-fold degenerate level E = $Ul + 1 corresponds to the set (100) of 
reciprocal lattice vectors, forming the states 1rI5,  lr12 and 2r1.  The 12-fold degenerate 
level E = $Ul + 2 corresponds to the vectors (1 lo}, forming the states 3rl, 2r12, 2rI5, 
1r2r5 and 1r25. The corresponding eigenstates occur as some symmetrised combinations 
of plane wave exp(iK, . r ) .  

Now turn to the discussion of numerical results. In the case of constant potential 
U1, all the off-diagonal matrix elements (14) vanish, and u,,(r) = U1 for each value i. 
Consequently, the set (15) of bound equations breaks into independent ones, and the 
sole partial wave 

(P,,(Y) -i@ - W 2 Y )  (24) 

contributes to the corresponding basis function x , ~  (13). It means that in the empty 
lattice test the number p is equal to 1. 

The band bottom lrl ( E  = U,) represents a particular case. Indeed, its true 
wavefunction is equal to a constant. Hence it follows that only one basis function ~ 7 1 ,  

which corresponds to angular momentum 1 = 0, may contribute to the expansion ( l l ) ,  
because all the remaining functions (24) with j # 1 tend to zero as E approaches U1. 
Therefore a non-trivial solution is obtained if the size q of secular matrix is equal to 1. 
Thus, the energy eigenvalue lrl may be obtained merely as a zero of the following 
equation: 

S 

Kgl l (K)  + Bl,(O, E)fnl(K> = 0 s+ x .  (25) 
fl=l 

Thus, an estimate of the eigenvalue lrl depends on the single parameter s. The con- 
vergence of the calculated eigenvalues ~~l~ to exact ones E is displayed in table 1. For 
each givens the absolute value of deviation (AVD) 1 A& 1 = I &,is - El increases if I U1 1 rises. 
At the same time, for each given value U1 the calculated AVD 1 A& 1 approach zero if the 
numbers increases. In particular, for each I U1 I s 2.0, AVD 1 hall5 1 are less than 0.0001. 
It is advisable to list the angular momentum values in the representation r,: 1, = 0 ,  

The convergence of all other empty lattice states is governed by two independent 
parameters q and s. As an example, let us consider the deviations = e4is - Efor 
the state 2r15, displayed as functions of numbers (s = 1,2 ,  . . . , 12) at some fixed values 
q (q  = 1,2 ,  . . ., 6) in figure 2. (The cubic harmonics X f l 5 '  (9) match precisely the real 
spherical harmonics Yl tm, ,  and thus thefunctions{I,m,} = {l,O; 3,O; 5 , O ;  5,4;7,0; 7,4; 9,O; 
9,4; 9,8; 11,O; 11,4; ll$} contribute to this set of 12 functions.) The zeros of deter- 
minants of first, second and third orders converge rapidly against s at all values U1 
studied: when s 2 6, AVD I A E ~  are smaller than 0,0001. The converged values E ~ / ~ ~  = 

12 = 4,13 = 6,14 = 8,15 = 10. 
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Figure 2. The deviations from the 
exact ones d for the state 2r,5 of a simple cubic lattice (a = n). Note the different scales in 
the left hand side (q i 3) and in the right hand side (q  3 4) of the figure q = 1; 

= ~ ~ 1 .  - Eof the calculated energy eigenvalues 

-x-x-q=2.-A-A-q=3.-m-I-q=4.-+-+-q=4.-+-+-q=s.-~-~-q=6, 

. Ac 

.0.004 

0.002 

Figure 3. The deviations A E ~ , , ~  for the state 2rI5 
of an empty simple cubic lattice versus the order 
q of the secular matrix. 

’ 

E+ differ from the corresponding exact ones Eby quantities of the order 0.01 to 0.1 (see 
the left part of figure 2). When q 2 4, the energies EsIs oscillate around the exact values 
(see the right part of figure 2). If 1 U 1 /  increases, the magnitude of these oscillations 
grows. When U1 = -0.2, the energies &41s, and &6Is converge quickly against s. Note 
that the converged value of sixth-order matrix practically matches the exact one (when 
s 3 9, IA&61s/ < 0.0001). When U1 = -0.8, for reliable observation of convergence, 
values of s larger than 12 are evidently needed. 

The conventional investigation of convergence implies the study of an eigenvalue 
against the size q of corresponding secular matrix. In figure 3 the difference A E ~ / ~ ~  = 
eql12 - E as a function of size q is presented. Dependences of such a kind are com- 
prehensive only if the respective eigenvalues prove to be converged against s (&?ll2 = 
E+). Nevertheless, one can see that the deviations Acql12 tend to zero monotonically 
from above. In particular, when U1 = -0.8, the difference A&6/12 is equal to 0.0006. 

Similar trends are also observed in the behaviour of eigenvalues lrI5 and 1r12. 
Summarising, one may conclude that, when the parameters s and q are increased, the 
calculated energy eigenvalues tend to match the exact ones E. The larger the 
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Table 2. The deviations A E ~ , ~  of calculated eigenvalues eqh from the exact ones C for 2r,, 
state of the 3D Mathieu potential (21) (U,  = -0.2, U 2  = -0.1, a = n). 

x 104 

q s = l  s = 2  s = 3  s = 4  s = 5  s = 6  s = l  s = 8  s = 9  s = l O  s = l l  s = 1 2  
~~ ~ 

1 12 12 85 95 92 92 92 92 92 92 92 92 
2 - 25 34 49 51 46 41 41 41 41 41 41 
3 -  - 10 31 21 21 21 21 26 26 21 21 
4 -  - -11 -14 -18 -12 -9 4 4 5 5 - 

magnitude U1, the more terms s should be accounted for in each element of the secular 
matrix, and the larger the values q of its size should be taken, if a given accuracy is 
required to be reached. Comparison of various levels shows that the rate of convergence 
is mainly governed by the corresponding energies: the higher a level, the slower is 
convergence. For instance, the levels 2r1 and 3r1  converge slower than level TI. 

The empty lattice test was also studied by means of methods that represent the direct 
extension of the MS approach. Both the 3~ case [3,13,23-251 and the 2D case [ll, 141 
were considered. From most of these investigations it follows that, similar to the MT 
model, the convergence is governed by the single parameter I,,,. According to our 
analysis, this mode of investigation may be reproduced by setting arbitrarily q = s. 
However, our numerical experience shows that this degree of approximation appears 
to be insufficient, and values s B q are generally required. This phenomenon is clearly 
seen in the case of the lr, state (table 1). 

As a result of 2~ calculations for an empty square lattice, it was previously noted that 
the convergence rate of an excited state with a fixed symmetry, e.g. 2r0, is slower than 
for a lowest state with some different symmetry, e.g. lr2 [14]. Zeller [ l l ]  regarded this 
as a consequence of the special form of secular matrix used by Faulkner [14], by which 
the inverse of the nearly degenerate t matrix should be computed. This difficulty is not 
inherent to the secular matrix (19) used in our calculations. 

6. Three-dimensional Mathieu problem: results of calculations 

Consider now the calculated energy eigenvalues of the 3D Mathieu problem. The exact 
eigenvalues Bare defined by means of expressions (23). For the specific case of 2r15 state 
the deviations = eqls - Bare displayed in table 2. One can see that the zeros of first 
and second orders converge rapidly enough against s: when s 3 6, the variations of the 
deviations Aells and Ae21s do not exceed 0.0001. As to the zeros of third and fourth 
orders, for more reliable fixation of the converged energies with the chosen accuracy of 
0.0001 somewhat larger values of parameter s are desired. If the required degree of 
convergence against s is reached (that is, if e9i12 may serve as .+), then the dependences 
of values E~~~~ upon q are sensible. When q increases, the deviations Ae9iI2 approach 
zero monotonically from above (see the last column of table 2 ) .  Thus even for a level 
with such a high energy = 1.9499) to reach the accuracy of 0.0005, it is sufficient 
to calculate zeros of fourth-order determinant (14 = 5 )  with s = 12 ( I l 2  = 11). 



5700 I I Gegusin and L I Leontieua 

0 2 i 6 8 I 0 1 2 0 2  4 6 8 1 0 1 2  
s 

Figure 4. The deviations for the state l T , j  
of the 3D Mathieu problem (21) with U, = -0.2, 
U, = -0.1 (left), and U, = -0.2, U, = -0.2 
(right): --c-C q = 1; -x-X- q = 2; 
-A-A- q = 3; -B-m- q = 4. 

Similar results are obtained by studying the states 117,5, lrl and 1r12. In figure 4 as 
an additional example the deviations for the state lr,, are displayed. The main 
trends are the same as for 2r1,, though the convergence of lrI5 eigenvalue is more rapid. 
This phenomenon is obviously connected with the difference in their absolute energies. 
In particular, when U, = -0.1, the AVD I At.,,,,I is less than 0.0001. If 1 U21 increases, the 
AVD 1 1 also grow. To reach a given accuracy, both the size q of secular matrix and 
the numbers of terms contributing to each matrix element should be increased, if larger 
values 1 U,  I are used. 

Nevertheless, numerical experience for a sufficiently wide range of values U,, per- 
formed for some fixed values q ands, has demonstrated that the deviation he,,, appears 
to be an oscillating function of U, rather than monotonic. Thus by means of some fixed 
values q and s one may obtain approximate (non-converged) estimations of eigenvalues. 
The energies evaluated in this manner for the states l r l ,  lr,, and lr12 over a wide range 
of the parameter U2 are compared with the exact ones in table 3. Some preliminary 
results obtained with smaller values of parameters, were presented in [19]. 

When for the state lrl the approximation ‘3/7’ is chosen, the maximum AVD ~ AEI 
does not exceed 0.003. Similarly in the case lr15 the approximation ‘4/6’ allows one to 
reach an accuracy of -0.002, and in the state 1r12 for the approximation ‘3/9’ the AVD 
are less than 0.004. 

7. Conclusions 

A thorough investigation of the method [19] assigned to solve the non-MT band-structure 
problem exactly shows that an approximate energy eigenvalue is determined by three 
independent parameters, which are connected with the truncations of series for GF, basis 
functions and wavefunction. In the case of a MT potential the degree of approximation 
is governed by a single parameter I,,,. The numerical results obtained for some empty 
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Table 3. The calculated eigenvalues 
versus U ,  ( U ,  = -0.4, a = n). 

and the exact ones 8(23) for the 3D Mathieu potential 

lrl lr,, 1r12 

U2 E317 E E4f6 & E3iY E 

-0.4 -0.1145 -0.1149 0.8889 0.8892 0.8944 0.8942 
-0.8 -0,1578 -0.1590 0.8577 0.8573 0.8776 0.8770 
-1.2 -0.2292 -0.2301 0.8069 0.8058 0.8492 0.8491 
-1.6 -0.3227 -0.3253 0.7382 0.7365 0.8104 0.8115 
-2.0 - - 0.6539 0.6517 0.7629 0.7653 
-2.4 - - 0.5558 0.5535 0.7085 0.7114 
-2.8 - - 0.4459 0.4438 0.6487 0.6508 
-3.2 - - 0.3259 0.3243 0,5846 0.5844 
-3.6 - - 0.1974 0.1963 0.5169 0.5127 

lattice and 3~ Mathieu tests show that by increasing all three parameters mentioned the 
calculated energy eigenvalues approach the exact ones. 

As far as we know, the numerical solution of the 3~ Mathieu problem has been 
attempted in the present study for the first time. (Moreover, in a recently published 
paper, it was declared that the ‘empty lattice model is the only 3~ model of a non-MT 
potential that I am aware of for which the exact eigenvalues are known’ [23].) The 
previous investigations, performed by means of generalised MS approaches, are restric- 
ted to some empty lattice tests only, including 3~ [3,13,23-251 as well as 2~ [ll, 141 
cases. Unfortunately, we cannot compare our empty lattice results with the cited ones 
for two reasons. First, all the studies referred to are related to a body-centred cubic 
(BCC) lattice, rather than a sc one. Secondly, the mentioned 3D results are displayed by 
means of RMS deviations of calculated eigenvalues for a number of states, which form a 
degenerate level. On the contrary, we have studied the deviations for each individual 
state. The sc lattice was chosen because it represents a more crucial test: the shapes of 
BCC or FCC cells are closer to a sphere, so in a sc lattice the effects of anisotropy should 
be more pronounced. 

Additionally, the anisotropy of the 3D Mathieu potential in a sc lattice exceeds 
essentially any conceivable anisotropy of a potential that describes an arbitrary many- 
atom system. Therefore successful computations for the 3~ Mathieu potential in a sc 
lattice allow one to expect that the method offered will serve as a useful tool in electronic 
structure theory. 
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